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Abstract 

An improvement of the classical theory of extinction 
in mosaic crystals is made by starting from the energy 
transfer equations valid for a general-type crystal 
according to Zachariasen's [Acta Cryst. (1967), 23, 
558-564] classification. Within the assumption that 
only the integrated intensity of the diffraction peak 
is needed, the equations are first simplified and then 
solved. The result obtained for the extinction factor 
is similar to that of Becker & Coppens [Acta Cryst. 
(1974), A30, 129-147], but two new parameters 
appear if the crystal is not of type I. One of them, 
determining the peculiarity of the transfer equations, 
gives differences in the extinction factor not greater 
than 8%. The other, representing the ratio of the 
kinematical cross-section strengths along the diffrac- 
ted and incident beams, gives differences up to 50%. 
For crystals of ellipsoidal shape, empirical formulae 
appropriate for structure refinement programs are 
proposed. 

1. Introduction 
In this paper we re-analyse the problem of secondary 
extinction in the framework of classical transfer 
theory. The transfer equations for secondary extinc- 
tion in finite crystals were first written by Hamilton 
(1957) and were based on the mosaic model of Darwin 
(1922) for the ideal imperfect crystal. Zachariasen 
(1967) has used similar equations to describe extinc- 
tion in real crystals, so henceforth we will call these 
equations Hamilton-Zachariasen (HZ) equations. 

* Permanent address: Institute for Nuclear Power Reactors, PO 
Box 78, Pitesti, Romania. 

Zachariasen stated that any real crystal is situated 
between two limiting types, distinguished by the 
nature of the peak width: type I if the width is given 
exclusively by the mosaic and type II if the width is 
given by the crystallite size only. Correspondingly, 
the secondary extinction follows the same 
classification. So far as primary extinction in small 
mosaic blocks is concerned, a description by the same 
transfer equations has been considered good enough 
under the assumption that this extinction is weak. 
The unified theory of Zachariasen has been very much 
criticized both for some mathematical errors and for 
its physical basis. On the same basis, Becker & Cop- 
pens (1974a) (BC) have re-analysed the HZ 
equations. The solution which they provided has 
become very popular both for its convenient param- 
etrization for least-squares-refinement programs and 
for its resistance to numerous experimental tests (see 
e.g. Hutton, Nelmes & Scheel, 1981). 

The limitations on the classical theory of extinction 
in real crystals were clarified by the new dynamical 
statistical theory of Kato (1976a, b, 1979, 1980). Start- 
ing from the dynamical equations for a distorted 
crystal and assuming a homogeneous and isotropic 
distribution of the defects, Kato derived a system of 
energy transfer equations valid for extinction only if 
the coherence distance tc is smaller than the extinction 
distance A = (n,XlFI) -1. Here A is the wavelength, F 
the structure factor and n the density of unit cells. 
The energy transfer equations of Kato are similar to 
but not identical with the HZ equations. The differen- 
ces discussed in detail by Kato (1976b, 1979) are in 
the form and physical interpretation of the coupling 
constants. Analysing the equivalence between the two 
kinds of energy transfer equations, Becker (1977) 
concludes that the range of validity found by Kato 

0108-7673/87/030304-13501.50 (~ 1987 International Union of Crystallography 



N. C. POPA 305 

for his energy transfer equations is the same for the 
HZ equations. The Kato theory, giving the extinction 
for any degree of crystal perfection, is more extensive 
than the classical theory. For tc > A the Kato theory 
replaces the energy transfer equations by equations 
for the averaged wave functions. On the basis of 
Kato's energy transfer equations, Kawamura & Kato 
(KK) (1983) have elaborated a practical formula for 
the secondary extinction in a cylinder and a sphere, 
valid for a Bragg angle smaller than 30 ° and extinction 
parameter smaller than 2. Comparing their formula 
numerically with the BC calculations, KK have found 
significant differences. But recently Harada, Miyatake 
& Sakata (1984) have compared KK and BC formulae 
experimentally using neutron diffraction data. 
Although some reflections were severely affected by 
extinction, they have found only small differences in 
the refined structure parameters. 

It seems that in spite of its limitations there are not 
enough arguments for abandoning the classical theory 
of secondary extinction. But as was emphasized for 
a long time (Werner, 1974) the HZ equations describe 
the secondary extinction rigorously only in crystals 
of type I. When the natural broadening becomes 
competitive with the mosaic broadening or dominant, 
the classical energy transfer equations take a different 
form, the HZ equations being only a limiting case. 
These more general equations, labelled below as (1), 
can be directly obtained (see e.g. Popa, 1976) from 
the neutron transport equation of Vineyard (1954), 
which is a classical equation (see e.g. Sears, 1975, 
1978). Thus the equations (1) are also classical, and 
like their HZ limits they describe the extinction only 
for crystals and diffraction maxima which fulfil the 
condition given above: tc<-A. This condition is 
fulfilled by type II rather than by type I crystals. 
Indeed the type II extinction is associated with a 
small block size, while in type I crystals the block 
size and the primary extinction may be large. In this 
paper we solve (1) in order to find a formula for the 
secondary extinction (alternative to BC) valid (in the 
limit t, ~< A) for any type of crystals: type I, type II 
and a mixed type. The correction to the BC result is 
small for isotropic crystals of type II, but becomes 
significant for anisotropic crystals. This may explain 
why in many cases the BC formula fits the experi- 
mental data well, but sometimes, although the mosaic 
is small, the type II model for extinction gives an odd 
result (see Hutton, Nelmes & Scheel, 1981). 

This paper contains six parts. In § 2 the arguments 
permitting simplification of the transfer equations 
which are then solved in the next two parts are dis- 
cussed. Two new quantities are defined, which 
differentiate our result from the BC result. In § 5 
an empirical formula is proposed for extinction 
in spherical and ellipsoidal crystals with aniso- 
tropy. A comparison with the BC result is made in 
§6. 

2. Transfer equations for intensities 

For small primary extinction and weak absorption 
the general form of the energy transfer equations is 
(Werner, 1974) 

O/,(r, kl)/Ox, = - [ /~ + j dk2 e(k~ -> k2)]] l(r, k,) 

+ j" dk2 #(k2-* k,)I2(r, k2). ( la )  

OI2(r, k2)/Ox2= -[l~ + ~ dkx ~(k2--> k,)]I2(r, k2) 
+j dk, #(k,-~ k2)I,(r, k~). (lb) 

The indices 1 and 2 refer to the incident and diffracted 
beams respectively, I is the intensity, k is the wave 
vector,/~ is the linear absorption coefficient (includ- 
ing all non-Bragg scattering), xl, x2 are the coordi- 
nates in the oblique system with axes il, i2 along the 
mean incident and diffracted beam respectively and 
i3 normal to the (i~, i2) plane, which in the following 
will be considered horizontal (see Fig. 1). The quan- 
tity ~(k~ --> k2) is the average over the mosaic distribu- 
tion of the kinematical Bragg cross section per unit 
volume for the process k~--> k2. It is independent of 
r if the crystal is homogeneous. If the primary extinc- 
tion factor yp is not unity and the average size of the 
perfect crystallites is smaller than the extinction dis- 
tance, then the same equations (1) will be used with 
replacement of t~ by ypt~. 

The explicit form of the cross section # depends 
on the model chosen for the crystal microstructure: 
the shape and the dimension of the perfect blocks 
and the distribution of their orientations. The model 
frequently used for the anisotropic mosaic crystals 
has at most twelve parameters. These are the lengths 
and the orientations of the principal axes of two 
ellipsoids; one ellipsoid approximates the average 
shape of the perfect mosaic block (Coppens & Hamil- 
ton, 1970) and the second is the surface of constant 
probability associated with the three-dimensional dis- 
tribution function W(A) describing the block mis- 
orientations (Nelmes, 1980). Here A is a vector of 
which components represent small rotations around 

~2 x. 

-•1 KIO 

Fig. 1. Diagram of the diffraction process and the coordinate sys- 
tems (i), (~'), (n). The wave vectors kl, k2 are drawn for con- 
venience in the plane of their averages, kl0 and k2o, respectively. 
The unit vectors i3 =~'3 = n3 are perpendicular to the plane of 
the figure. 
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the axes of an orthogonal coordinate system. The 
number of model parameters reduces to two if no 
anisotropy exists, and to one if, moreover, the crystal 
is of type I or type I I. 

The Bragg cross section is elastic. It contains the 
factor 3 ( k t -  k2) (which in the following will be omit- 
ted); thus all the integrals in (1) become double 
integrals. 

If the profile of the diffraction peak is desired, (1) 
must be solved under the boundary conditions 
imposed by the instrument. But both the boundary 
conditions and (1) become simpler if one wants only 
the integrated intensity of the diffraction peak, a 
quantity independent of resolution. There are many 
possible ways to record the integrated intensity. If, 
for example, the diffractometer is set to have a very 
good resolution, a three-dimensional scan must be 
performed. The dimension of the scan can be 
decreased if the resolution is reduced. For example, 
if the collimator in front of the detector is removed 
and the detector's window is large enough, the 
integrated intensity is provided by a one-dimensional 
scan. For the angular dispersive diffraction method 
this may be a scan with the crystal (detector fixed) 
or a scan with the crystal and detector in the ratio 
1:2. If a strongly divergent monochromatic beam 
with uniform angular distribution of intensity is avail- 
able, the integrated intensity can be measured with 
both crystal and detector fixed (no scan). For the 
integrated intensity all these procedures are 
equivalent, the practical choice being dictated by 
other considerations. The last procedure entailing the 
simplest boundary conditions for (1) is the most con- 
venient for our aim. In the energy dispersive method 
the integrated intensity measurement without scan 
may be realized if the channel width of the energy 
analyser is chosen large enough to cover the entire 
diffraction peak. In this method the incident beam is 
well collimated, but it has uniform wavelength distri- 
bution of intensity. In the following the angular dis- 
persive method and the energy dispersive method will 
be treated together, as they are characterized by the 
same extinction factor (Tomiyoshi, Yamada & 
Watanabe, 1980). 

The Bragg cross 
depend on k~ and 
d i f f e r e n c e  - m o r e  

section for a given block does not 
k 2 separately; it depends on their 
exactly, on the vector h=  

k 2 - k  I - H ,  
block. This 

where H is a reciprocal vector for this 
cross section is given by 

o ' ( h ) = n E l F l 2 [ ~ e x p ( i h r ) d v l  2, (2) 
v 

v being the volume of the perfect block. Let us denote 
by Ho the vector H for the most probable mosaic 
block. This vector together with the line connecting 
the centres of the sample and detector define the 
diffraction plane, considered horizontal. The wave 
vectors k,o and k2o lying in the horizontal plane and 

fulfilling exactly the Bragg condition k 2 o - k l o  = H o 
are the averages of the vectors k, and k 2 respectively. 
The vector h is determined only by the deviations 
from the averages of the vectors k~, k2, H. These 
deviations can be easily written, if two new coordinate 
systems (see Fig. 1) are introduced: the oblique system 
(a-~) with a-~, "r2 lying in the horizontal plane and 
perpendicular to i,, i2 respectively, a'3 = i3; and the 
orthogonal system (n~) with a2 along Ho, n~ perpen- 
dicular to Ho in the horizontal plane and n3 = i3. Then 

A k t = A k i t + k o % h x t + k o % ~ ' r 3 ,  (1 = 1, 2), (3a) 

AH = A X Ho = 2ko sin 0(-e3nl + eln3). (3b) 

Here 0 is the Bragg angle, %h, 3% ( /=  1, 2) are the 
horizontal (h) and vertical (v) divergence angles, 
k o = l k , o l = l k = o l  -- H / ( 2 s i n  0), A k = k l - k o = k E - k o  
and ei are the components of A in the (ni) system. 
Writing all the vectors in the (-r~) system, one obtains 
the vector h as follows: 

h = ko[ - (F~ - ea)'tl + (1-'2 - ea)a'2 + (F3 - 2 sin 0el)a'3] 

(4) 

where Fi (i = 1, 2, 3) are defined as follows: 

F, = Tlh -zak tan 0/ko, 

/'2 = Y2h + Aktan 0/ko, (5) 

F = 3/2v - ~'l v- 

The quantities Fi, chosen to give a unique treatment 
for both diffraction methods, are equivalent to diver- 
gence angles, though their nature is not purely angular 
(except for F3). By convention we call them 
equivalent divergence angles. The average cross sec- 
tions t~(kl ~ k2) = f f ( k 2 ~  k,) are then 

CX3 

t~(F1,/-'2, F 3) = J ~  o ' ( F  l - e 3 ,  F 2 - e3, F 3 - 2e~ s in  0) 
- - c o  

x W ( e l ,  e2, Ca) del de2 de3. (6) 

The integrated cross sections J dk2 #(kl-~k2) and 
J dkl #(k2-~kl) are in general different from each 
other and depend only on one equivalent divergence 
angle, F1 and /'2 respectively. We denote them by 
~ l ( C l )  and ~2(F2).  

Let us denote by P~ the integral of I~ over the vertical 
divergence angle ~/iv (i = 1, 2). If ( la )  is integrated 
over 3'1 v in the range (-o0, o0), then the left-hand side 
and the first term of the right-hand side become 
8 P l / S x l  and - [ / z  + #I(F,)]P1. In the second term of 
the right-hand side this integration acts only on the 
cross section #(F,,/rE, F3) resulting in #(F1,/-'2), a 
function independent of ~/2v ; consequently, the exist- 
ing integral over T2v acts only on 12 and the second 
term b e c o m e s  ~_~oo d~/2h o ' (Cl ,  F 2 ) P  2. Evidently, here 
d'Y2h c a n  be replaced by dF2. In the same manner we 
proceed with ( lb) ,  inverting the roles of 3'1v and Y2~. 
Thus we obtain two equations for the functions P1, 
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1:'2 similar to (1) except for the simple angular integral 
for the second term on the right-hand side. The cross 
section under this integral has the form 

e(F1,/2) = ~ d83 tr(rl-e3, F2-e3) W(e3) (7a) 
--OO 

where 
OO 

t r(rh/ '2)  = ~ dF3 tr(rl,  /2, /-'3) (7b) 
--OO 

oo 

W(E3) = J f  de1 de2 W(el, e:, e3). (7c) 
--OO 

The formulae (7) are obtained by integrating (6) over 
F3, an operation imposed by the integration of ( la)  
and (lb) over ylv and yEv respectively. The function 
W(e3) is the one-dimensional mosaic distribution 
seen in a particular diffraction process and it is the 
projection on the axis n3 of the three-dimensional 
mosaic distribution W(A) (Nelmes, 1980). The 
integral cross sections t~l(F1) and tr2(F2) are found 
by integrating (7a) over/'2 and/'1 respectively. For- 
mally, e(F1,/2)  can be factorized as follows: 

e ( r , ,  G) = e l ( r l ) z l ( r l ,  G) = a2(G)z2(G, r l ) .  

(8) 

Hence, the classical energy transfer equations allow- 
ing one to obtain the secondary extinction factor both 
for angular dispersive and energy dispersive diffrac- 
tion methods are the following: 

Oel(r, F,)/oxl = - [ g  + ex(/'l)]Pl(r, I',) 
oo 

+ O ' l ( F 1 )  ~ Z I ( G • / 2 ) P 2 ( r , / 2 )  d / 2  
-co  

(9a) 
OPz(r,/2)/axz= -[/x + ez(/2)]Pz(r,/2) 

oo 

+~2(/2) [. Z2(/2, I'OPI(r,F,)dF1. 
--00 

(9b) 

The boundary conditions for the functions P1 and 
P2 are as simple as for the functions/1 and 12. Thus, 
if the crystal has a convex shape and is bathed by an 
incident beam with uniform spatial distribution of 
intensity, the boundary conditions are (see Fig. 2) 

Pl(r, El) ABc = 1; P2(r,/2) Bco = 0. (10a, b) 

The equations (9) are different from HZ equations. 
Their right-hand sides contain angular integrals and 
different integrated cross sections ~i(Fi). The 
existence of the integrals on the right-hand side of 
(9) is a direct consequence of the smallness of the 

mean mosaic block. The problem was first discussed 
by Darwin (1922) and later by Werner (1974) and 
others (see e.g. Suortti, 1982). If the mosaic block is 
small, the size of the corresponding reflecting domain 
in reciprocal space is large. The effect of the mosaic 
misorientation is to extend the reflecting domain 
perpendicularly to the vector Ho. Thus if a well 
collimated monochromatic beam is diffracted, the 
reflected beam becomes divergent. This divergence is 
determined by the section cut from the reflecting 
domain by the Ewald sphere. The successive 
reflexions make both incident and diffracted beams 
divergent; thus to write correctly the feedback term 
in the transfer equations we have to perform an 
integration over the divergence angle. If, moreover, 
the mean mosaic block has an anisotropic shape, the 
corresponding reflecting domain is ellipsoidal rather 
than spherical. Consequently the divergences of the 
incident and diffracted beams as well as the integrated 
cross sections ~1 and ~2 are different from each other 
(because the sections cut by the Ewald sphere are 
different). These effects become negligibly small for 
type I crystals. Indeed, if the mosaic width is much 
greater than the natural width, the reflecting domain 
is very flattened and the section cut by the Ewald 
sphere is small. Consequently (see § 4 below) the 
functions Z1 and Z2 become 8(F1-F2), el and c?2 
become identical and (9) are reduced to HZ 
equations. 

3. The solution of the transfer equations and the 
general expression for the extinction factor 

By definition, the extinction factor y is the ratio 
between the diffracted integral intensity and its kine- 
matical approximation. If the sample is totally 
immersed in the incident beam, then from Fig. 2 we 
have 

y = [sin 20/QVA(tx)] 

x ~ d/2 ~ dx3 x,,~)dXlP2[x,, x~(x,), x3,/2]. 
--oo x l (  B ) 

(11) 

x2 ~ x ~ !  

~ 8  C (Xl'X0) 

X 1 

Fig. 2. The cross section o£ the crystal in a plane parallel to the 
diffraction plane. The hatched area S(xx, x2) is the integration 

• area for equations (20), (28). 
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Here V is the sample's volume and the quantities Q, 
A(tz) are 

Q = n21Fl~X S/sin 20, (12) 

A(/z) = V -~ ~ dVexp[-lx(q+t2)],  (13) 
v 

where q, t2 represent the path in the sample of the 
incident and diffracted beams, respectively: 

tl(Xl, X2) -- X 1 -- X10(X2), (14a) 

t2(x,, x2) = x~(x,)- x2. (14b) 

As the problem is a plane one, in the following we 
will omit xs. The diffracted intensity P2 in (11) is 
found by solving (9) under the boundary conditions 
(10). This can be done for any form of the functions 
t~i(Fi) and Zi(F~, Fj). The strategy is the same as in 
Becker & Coppens (1974a), but the calculation here 
is longer and for the sake of brevity some elementary 
but tiresome details are skipped. 

In the first stage (9) and (20) are transformed into 
an integral equation. To do that let us define the 
functions ~i and ~:(o as follows: 

P/(xI,  x2, Fi)  = ~ii(Xl, x2, Fi )  exp [-tz(xl + x2)] 

(i--1,2);  (15) 
c o  

('>(x,, x~, r,)= f z,(r,, I))~j(x,, x~, rj) drj 
- - 0 0  

( i# j=1,2) .  (16) 

Then (9) and the boundary conditions (10) become 

o~O,(x,, x2, r,)/ox, = -~,( r , )q , , (x , ,  x~, r , )  

+ ~ , ( r , ) ( '>(x , ,  x~, r , )  

( i=1,2) ;  (17) 

~bl(x°,x2)=exp[l~(x°+x2)]=g(x2) (18a) 

~b2(xl, x°) = 0. (18b) 

The equations (17) under the boundary conditions 
(18) are solved as inhomogeneous differential 
equations and give the result 

~,(x,, x2,/'1) = g(x2) exp [-#,(r ,) t , (x, ,  x2)] 
x 1 

+ a,(r,) ~o exp [ - e , ( r , l ( x , -  u,)] 

X ~:(1)(Ul, X2, F1) du l ,  (19a)  
x 2 

q,z(x,, x2,/'2) = ~2(F2) x~o exp [-~2(r~)(x~- u~)] 

x ~:(2)(x~, u2,/'2) du2. (19b) 

Now, multiplying (19a) by Z2(F2, F1), (19b) by 
ZI(F1, F2) and integrating over F1 and F2, respec- 
tively, one obtains two coupled integral equations for 

the functions ~:(o. Eliminating b ~(1) o n e  obtains 

oO 

~:(2)(xl, x2, I'2) = g(x2) J d r ,  Z2(F,, r,) 
- - 0 0  

x exp [-6q(F,)tl(X,, x2) ] 
o o  

+ I d r ,  z 2 ( r ~ , r l ) o , ( r , )  

x I dA2 Z,(F,, A2)~'2(A2) 
- -OO 

X 1 X 2 

- e~(a~)(x~ - u~)](2)(u ,  u~, A~). 
(20) 

The extinction factor can be expressed by the function 
~:(2); indeed, from (15) and (19b), (11) becomes 

o o  

y=[QVA(i~)]-' ~ dF2 ~2(F2) ~dx3 ~ dSf(x~) 
-oo So( xs) 

xexp[-6"2(F2)t2(xl, x2)]~(2)(xl, xE, F2) (21) 

where we have denoted by $o(X3) the crystal cross- 
sectional area for a given Xs and byf(xl)  the function 

f(x,)  = exp [-/z (x, + x~)]. (22) 

In the second stage, the integral equation (20) is 
solved by successive approximations. For that, the 
following factorization for #~ and series development 
of ¢:(2) are necessary: 

#~( Fi ) = QG,( F~ ) (23) 

~(2)(xl,x2, F2)= ~ [(-1)"/n!] ~,(xl,x2, F2)Q". 
n = 0  

(24) 

Here the functions Gi and g, do not depend on Q. 
Introducing (23), (24) into (20) and identifying the 
coefficients of Q", one obtains 

~,(xl, x:, /'2) = F,(F:)g(x:)t~(xl, x:) 

)(m') + n ( n - 1 )  ~ n 2 
I=0 m=O 

X ~ dA2 H. -~-z( / '2 ,  A2) 
- -OO 

x GZ2-m+l(A2) 

X ~ d u l d u 2 ( x l - u l )  "-2-t 
S(xl.x2) 

x (x2- Ux)a-m~,,,(ul, u2, A2), (25) 
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where we have denoted by S(x~, x2) the hatched area 
in Fig. 2 and by F, and H,+~ the following functions: 

F . ( G ) =  ~ dr, z:(r2,r,)G~(r,); (n---O), 
--00 

(26) 

H.+,(F2, a2) = ~ dF, Z2(F2, F,) 
--00 

n + l  x G, (F,)Z~(F,, A21; (n---0). 
(27) 

In (25) and below, the sum exists only if the upper 
limit is greater than or equal to the lower one. 

The recurrence relation (25) can be solved using 
the BC approximation presented in Appendix A. 
Indeed, let us iterate (25) beginning with n = 0. ~:o 
and ~ are simple functions [first term of (25)]; ~ 2  

and ~3 contain an angular and a surface integral. But 
~4 contains a double angular and a double surface 
integral (A1). The latter is reduced to a simple surface 
integral using the BC approximation (A4). If one 
continues with ~5 and ~6 in the same manner, enough 
information is obtained to suggest the following form 
for the general term ~,: 

~,(x~, x2,1"2) = F.(r2)g(x2)t~(x~, x2) 

+ n ( n - 1 )  ~ du, du2g(u2) 
S(xt,x2) 

n - - 2  

x E tT(u~,u9 
m = 0  

xF_., n - 2  _ ul)._~_, 
l=m 1 (xl 

x (x2-  u2)t-mK,,-2,m.,(F2), (28) 

where the functions K (F2) fulfil the following recur- 
rence relations (n -> 2): 

K._2,m3(r2) = ~ dA2 H,,_~_t(F2, A2) Vtm(A2) (29a) 
--OO 

Vlra(r2) = Gl2-m+l(F2) f m(F2) 

i 
+ Y. G~-J+'(F2) 

j = m + l  

m - 1  

x ~ Kj-2.k.j-,.+k-l(F2). (29b) 
k = O  

The correctness of (28) is verified in the last step of 
this complete induction procedure by replacing it in 
(25) and using once again the BC approximation 
(A4). Now, if (21) is developed in a power series of 
Q and ~:, is replaced by (28), another double surface 
integral (A5) is obtained, which is reduced to a simple 
surface integral using the BC approximation (A6). 

Finally one obtains 
co 

y=[VA(Iz)] -~ ~ dF2~ dVexp[-I.~(h+t2)] 
--o0 V 

x ~. - - ~ v  v.,.(r2)t~ t2 (30) 
n = 0  / I  • m = 0  

where the functions V,m(F2) satisfy a recurrence rela- 
tion obtained from (29): 

vm(r2)= G~-m+'(r~)Fm(r9 
m - - 1  oo 

+ ~ G~-J+I(F2)~, ~ OA2 
j = m + l  1 = 0  --co 

x Ht+~(F2, A2) Vj-2-t.m-z-1. (31) 

The formula (30) is the most general expression 
for the extinction factor in the limits of the transfer 
theory and BC approximation, being valid for any 
model of the crystal microstructure. For practical 
purposes a closed formula must be obtained. This is 
a simple task if the crystal is of type I, but for the 
general type we need one more approximation. In 
the following the calculations will be much simplified 
if the mosaic model is introduced explicitly. 

4. Extinction for definite mosaic distributions 

Traditionally, the misorientation of the mosaic is 
described by the Gaussian distribution which in three 
dimensions is 

W(A) = glg2g3 exp - ~  . giA, . (32) 

Here the variables Ai are small rotations around the 
principal axes of the constant probability ellipsoid 
and gi give the widths of the distribution at half 
height: 

w, = 2(In 2/w)'/2/g, = 0.939/g~. 

The principal axes are oriented along the unit vectors 
m~ and in order to write down the distribution in the 
(n~) system an orthogonal matrix E (m) connecting mi 
and ni must be introduced: 

m , = ~  E~)nj ( i=  1,2,3). (33) 
i 

With 

A = Y~ A,m, = Y~ e,n, 
i i 

one obtains 

W(e,, e2, e3)=lCl'/2 exp (--zr ~,~, Cjkejek), 
j k 

C = E(m)'G2E(m); G o = gi8 U, 

(34) 
(35a, b) 
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where 8ij are Kronecker symbols. By integrating over 
el and e2 one obtains the one-dimensional mosaic 
distribution seen in the diffraction process: 

(--TTgoe3) , (36) W(e3) = go exp 2 2 

15' (m)2/ , , ,2  1 / g 2 " - E ~ k 3  / S k  (37) 
k 

which must be convoluted with the unit-volume cross 
section tr(F1,/ '2) of the average perfect block. 

The latter is calculated in Appendix B (B12, B13) 
for an ellipsoid with principal axes ri oriented along 
the unit vectors e~ ( i =  1, 2, 3) and depends on the 
ellipsoid radii Pi, P2 along the incident and diffracted 
directions respectively, and on the transformed Bragg 

~angle 0' (when the ellipsoid is transformed into a 
sphere). These quantities can be calculated if the 
orthogonal matrix E ( °  relating the systems (ci) and 
(n~) is introduced: 

/~(c)_ e , = E - 0  "J ( i=1 ,2 ,3 ) -  (38) 
J 

Indeed, using the transformation (see Fig. 1) 

i t=cos  0n~+(-1)  z sin 0n2 ( /=  1,2) 

and (C1), (C2) from Appendix C we have 

1/p2=~,  [cos OE~)t + ( - 1 )  t sin OE~)2]2/r 2 
k 

( l=  1,2); 

cos 20 '=  PiPE ~ (COS E 0E~I)E-- sin 20E~)2)/r E • 
k 

(39) 

(40) 

(41) 

Now the convolution (7) can be performed; with the 
factorizations (8) and (23) one obtains 

= r m i o r , )  ( i = 1 , 2 ) ,  (42) Oi(F/) a i o e x p ( -  2 2 

z , ( r , , F j ) = ( ~ , o / ~ i o ) e x p  2 2 

X(ViGFi--l-'j) 2] ( i # j =  1,2), (43) 

where 

2 2 2 2 ot io=(goCop j sin E 20 /AE) / (g  2 Jr cEp 2 sin 2 20/A 2) 

(i # j  = 1, 2), (44) 

Vie (g~ COS 20'pj/Pi + Z Z = Copj sin z 20/•z) 

2 2 (i # j  = 1, 2), (45) x ( g 2 +  Copj sin E 20/A2) -t 

~ E o = l / a E - - v E o ,  ~ 2 a = a E - v 2  o.  (46a, b) 

Here Co = 1.612 and ao is the block-shape-anisotropy 
parameter defined as 

ao - -  OlEG/ Oll O 
2 2 = (p,/PEl[(g 2 + CoP2 sin 2 20/A 2/ 

2 2 x (g2  + CoOl sin 2 20/A 2 ) - 1 1 1 / 2 .  (47) 

The following supplementary relations hold: 

= 2 = (48a, b) VEG aGVlG; ~2G a ~ S t a  

IPIGZ]EG Jr 81G82G = 1. (48c) 

Always, 0 -  < v~aVEC-- < 1 and consequently 0 -  < 8~aSEo 
<--1. 

Let us now discuss the limiting situations. If go < 
co sin 20 min (p~, pE)/A, then ao = 1, a~o = aEO = go, 
V~O= VEG=I, 8~O=SEO=0, aio /S io~O0 and as a 
consequence the functions Zi are 8 functions. In this 
situation the crystal is of type I, the extinction is 
governed by the mosaic only and the transfer 
equations are HZ. If, on the contrary, go>> 
Co sin 20 max (p~, p E ) / A ,  then a o = P l / P 2  # 1, O/iO = 

copj sin 20/A, rio = pj cos 2 0 ' / p ,  BiG = pj sin 2 0 ' / p ,  
(i # j  = 1, 2); aia/8io  are finite and Z~ are not 8 func- 
tions. In this case the crystal is of type II, the extinc- 
tion is governed only by the block size and the transfer 
equations are no longer HZ, as in the intermediate 
situation where the crystal is of mixed type. If sin 20 
is very small, the crystal cannot be of pure type I; 
but in this case p~ =/92, hence a o "" 1, v~o = 122G " "  1, 
,Slo = 820 "" 0 and although the crystal is of the mixed 
type the transfer equations are HZ. It is seen that 
when the quantity (8~SE)O is zero the transfer 
equations are always H Z  and the extinction is cor- 
rectly given by the BC theory. This parameter is 
directly obtained from (45) and (48c): 

((5~(~2)o = g~[g~ sin E 20 '+  c 2 sin 2 20 

x (p2 + pE_ 2p,p2 cos 20')/A 2] 

x [ (g2 + c 2 sin E 20p2/A 2) 

x ( g 2  JrC2osin220p2/AE)] -~. (49) 

Once given G~ and Zi, it is possible to calculate 
the functions V,,,,(FE). If (31) is iterated beginning 
with n = 0, after a few steps it will be observed that 
every V,,,(FE) is a sum of (~) Gaussians, all having 

m n--m+l the common factor O~oO~Eo . For type I crystals 
all the terms are identical and 

For the general-type crystal the expected difficulties 
in finding exact V,,,(F2) are discouraging. On the 
other hand, we do not need the profile but the integral 
of V,,,,(FE), and so we accept the following approxi- 
mation suggested by (50): 

Ol l G OI E G Prim 

x e x p [ - T r ( n +  1)ofla(p,, , /v. , ,)EFE]. (51) 
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Introducing this into (31) and retaining only (a) the 
height and area or (b) the height and the second 
moment, we obtain two coupled recurrence relations 
for the coefficients P,m and 1)nm. These relations 
depend on one parameter only, (8~82)e, and can be 
solved numerically. The quantities of interest [which 
determine the areas of V,m(F2)] are V,m. They fulfil 
the conditions V.m = V,,.-m and vm -< 1, the equality 
taking place for m = 0  and m = n (and of course 
always for 8182=0). The recurrence relations (a) 
overestimate V,m and, conversely, (b) underestimate 
them. Some coefficients v,m calculated for (8~62)e = 1 
are represented in Fig. 3. 

With the approximation (51) the extinction factor 
(30) becomes 

oo  

y =  Y', [ ( - 1 ) " / n l ] [ ( Q o q ~ ) " / ( n + l ) ' / 2 ] t  ("), (52a) 
n=O 

t (")=[VA(tz)]  - '  ~ d V  exp [- tx( t l  + t2)] 
v 

x v,,nt'~(aot2) n-re. (52b) 
m = 0  

This differs from the corresponding Becker & Cop- 
pens (1974a) result [their equation (51)] by the 
coefficients V,m and a~ in t (~). The coefficient a~ 
occurs in (52) for n -  1, then it occurs also in the 
main extinction parameter. As in BC this parameter 
is defined by (only the factor 2/3 is ignored) 

X = QoqGt (l~. (53) 

The quantity t (~) here is the mean path in the crystal 
[or in the mosaic block if V in (52b) is replaced by 
v] only for a~ = 1. 

The coefficients v,m occur in (52) only for n >--2 
and they give a relatively small correction for the BC 
formula compared with a~. To evaluate this correc- 
tion we have calculated y by direct summation of 
(52) for a crystal of parallelepipedic shape with the 
edges along x~, x2, x3,/.~ = 0 and a~ = 1. In this case 
the volume integral in (52b) is readily performed, v,m 
were calculated numerically for 8182 = 0, 0.4, 0.7, 1.0 

Vnm (1 

1,0 ~ 

0,8 

0,6 

0,4 

0,2 

0 

n= 6 f n  = 10 

I i , i i i i i , , i r 

0 2 4 6 8 10 m 

Fig. 3. Some of the coefficients v,m calculated for ~1~2 = 1; +v,m 
overestimated; © v.m underestimated. 

and n -  60. For these n it is possible to sum (52a) 
with an accuracy of three decimal digits in the range 
0 -  x - 5-7 (y >- 0.2). The results of the summations 
made with underestimated and overestimated v,m 
ditter from each other by at most 1.1%, therefore 
their mean value was considered satisfactory. The 
values of y calculated in this way for values of x 
varied with a step of 0.1 were used to fit the following 
empirical function: 

y(x, 8182)=yo(x)[1-~182AoxC°/(l+BoxC°)],  (54) 

where y o ( x ) - y ( x ,  0). We have obtained Ao--0.02, 
Bo - 0.26, Co = 1.5 with 

R = ~[y(calc.) - y(x, ~182)1/~ y(calc.) = 0.008. 

For x - 3 0  the maximum deviation of y(x, 1) from 
yo(x) is only 8%. This explains why the BC formula 
gives good results in many cases. 

For the crystal with/z ~ 0, a # 1 and of other shape 
or mosaic distribution, small variations of the param- 
eters Ao, Bo and Co are expected. But if the smallness 
of the correction (54) itself is taken into account, 
these variations can beneglected. If (54) is in general 
accepted, it only remains to express Y0. For that we 
must take V,m = 1 in (52b). But in this case, by using 
the identity 

~'--o n! c m=0 

=exp[--c(u+v)]Io[2C(uo)l /2],  (55) 

where Io is the modified Bessel function, one obtains 
Yo as follows: 

yo=[QVA(Iz)]  -1 ~ d V  e x p [ - t z ( t l  + t2)] 
v 

o o  

x ~ d T # l ( T )  e x p [ - # l ( T ) ( h + a t 2 ) ]  
- - 0 0  

x Io[2#1 (T)(aht2)l/2] • (56) 

This expression is valid for all mosaic distributions 
leading to the functions V,m(F2), in which the quan- 

ta n - - m + l  tity a l  a2 can be factorized. 
It seems (e.g. Becker & Coppens, 1974b) that the 

Lorentz mosaic distribution is more adequate for the 
secondary extinction than the Gauss distribution. But 
it must be noted that a three-dimensional Lorentz 
function has an infinite norm and cannot be a physical 
distribution. A function with tails longer than 
Gaussian which may be a mosaic distribution is 

W(A)=2~rglg2g3/ 1+/3o gi A` , (m--2) ,  

(57) 

where flo(m) results from the normalization condi- 
tion. Taking m = 2  we obtain flo=4~r 4 and w i -  
21/2/(Trgi)=0.45/gi. The one-dimensional mosaic 
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distribution becomes 
2 t2 2 W(e3)=(rrg'L/2)[1--(2/rr)arctan2rt gLe3], (58) 

where for g~. one has exactly the same expression as 
for gG. The asymptotic behaviour is e~ -2, when it can 
be well approximated by the Lorentz function: 

W(e3)=gL/(l  +TrZgZLe~) gL= rrg'L/2. (59) 

This is the sole argument for preserving the name 
Lorentz for this distribution. Further, to calculate the 
functions G~(F~) it is enough [because (54) is accep- 
ted] to convolute (59) with the perfect block cross 
sections o'~(F~) given by (B14). Their Lorentzian 
approximations (B16) are preferable for reasons of 
simplicity and the following results: 

G,(F,) = aa_/ ( l+  zr2aa~,)2-2" (i = 1,2); (60) 

au. = (l'5gLpj sin 20/A )/(gL+ l'5pj sin 2O/Z ) 

(i ¢ j =  1, 2). (61) 

The block anisotropy parameter a t  becomes 

aL -- Ol2L/ OglL 

-" ( P l /  P2)(gL + | '5p2 sin 20/A) 

x (gL + l'5p~ sin 20 /h ) - I  (62) 

and, in place of (49), 

( 6~62) ~/2= gL[gL sin 20'+ 1.5 sin 20(p~ + p~ 

- 2pip2- 2piP2 cos 20')1/2/A ] 

X [(gL+ l'5p~ sin 20/A) 

X (gL + 1"5p2 sin 20/A)] -t (63) 

is used. 
It can be anticipated that if the cr~stal is nearly 

type II the Gaussian variant will work badly, because 
here #~(F~) is practically given by o's(F,), roughly 
approximated by a Gaussian. 

5. Application to spherical and ellipsoidal crystals 

The diffraction data for precise structure determina- 
tion are collected on spherical crystals, because this 
shape makes it relatively easy to make absorption 
and extinction corrections. For extinction, polyhedral 
crystals may be approximated by ellipsoids. If one 
denotes by P~o and p20 the ellipsoid radii along il and 
i2 and transforms the ellipsoid into a sphere of unit 
radius (when 0 is transformed into 0~), (53), (56) 
become 

X = Q(OtlotzPloPzo)l/Zt'(ao, ae) (64) 
o o  

yo=[3/4~ra(~, a0)] ~ dy~,(y) 
- -OO 

x ~ dV' exp[-~(t~a~/Z+t~/a~/2)] 
St 

¢t~1/2_1 - ¢t/al/2"] 
xexp --X~O(~) "lt4e''----~'21"--'-~e ] 

t'( ao, ae) J 

(t~ t~)1/2 ] 
× Io 2 x , ( r )  t ( ao_ aT--)J (65) 

where S1 is the sphere of unit radius and ~', A(~', ao), 
t'(ao, ae) are given by 

~--  tZ(ploP20)l/2; (66a) 

3 ~ dV'exp[-~(t[a~/2+t~/a~/2)] 
A(~, ao) = ~-~ Sl 

(66b) 

3 ~ dV,(t;ale/2+t~/a,/2~ 
t'(ao, ae)-  4rrA(~', ao) s, e " 

x exp [-~(t~a~/2 + t'2/a~/2)]. (67) 

We have denoted by ~o(y) one of the functions 
e x p ( - r r y  2) or ( l+rr2y2) -~ and by ao, ae two 
anisotropy parameters: 

a0 = Pl0/P2o; ae = ao/a. (68a, b) 

The former gives the crystal-shape anisotropy and is 
related only to absorption; the latter is related to 
scattering and contains all the anisotropies in the 
crystal: mosaic, block-shape and crystal-shape 
anisotropy. Let us call a~ the effective anisotropy. 

To calculate the extinction factor in the structure- 
refinement programs an empirical formula is used, 
reproducing numerically the exact expression. From 
(65) it is seen that Yo for the secondary extinction 
contains five parameters: x, 0, ~r ao and ae. The 
dependence on ~', ao and a~ is of two kinds: an explicit 
dependence and an implicit one through the param- 
eter x. The former is weaker than the latter and can 
be neglected for small ( and for ao, ae near 1. If these 
conditions are not fulfilled, the approximation could 
be rough. On the other hand, searching for an 
empirical formula with five variables requires much 
computational time and a large memory which may 
be difficult to achieve with small computers; in this 
case the variables are restricted to four. 

For spherical crystals (ao = 1) we have computed 
Y0 with (65) at 4592 points in the volume: 0 <- x <- 30, 
0.05<-r/<-0.95, 0-<~-<3 and l - a - 8 ,  where r /=  
sin 0. A Gaussian integration grid was used providing 
an accuracy of three decimal digits in Yo. With X = 
In a, the following empirical function was fitted by 
the least-squares method with values computed from 
(65): 

yo(x, rh ~, X)= Yoo(X, r/)[1 + ~ A2x"S/(1 + B2x"5)] 

_ x_2A3x"5/(l+_B_3 x 's)  ,] 
x 1 l+x2C3xl.5/(l+O3x,.5) J, 

(69) 
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the coefficients A2,..., 93 being polynomials in r/ 
and ~. For the function Yoo(X, rl) we have tried the 
formula proposed by Becker & Coppens (1974a) and 
found that some values are reproduced with an error 
up to 10%, though the R factor (for the fit of Yoo 
only) is good. Then we modified the BC empirical 
formula as follows (for Gauss and Lorentz distribu- 
tions): 

[ ( a'xC l'  
Y~oo°)(x, 7/)= l + x  DI-t l + ~,xq l J ; D 1  - -  21 /2 ,  

(70) 

y•Z)tx[ ( Alx  
oo , , ~7) = l + x  DI+I+B1-------- ~ 

C,x 2 ~ ] - , /2  

+ (1 +ffllX)2/J ; Dx = 1, (71) 

the coefficients A1, B~, C~ being polynomials in r/. 
The expressions for the coefficients A 1 , . . . ,  D3 
obtained from the fit are 

(a) for the Gauss mosaic: 

A1 = 0.721 + 0 . 1 2 r / -  0-736,/2 

10B1 = 0.11 +0 .603 , / -0 -709 , /2  

C1 = 1-0-505, /2  

10A2 = 0.08 + 0 .8777/-  0.577~72- 0.068 ~ 

B2 -- 0.502 - 0.912-q - 0-15~" + 0.734,/2 
(72) 

+ 0.138 r/~ + 0.021 ~ "2 

10A3 = (0-124+ 0 . 0 8 2 r / -  0.031~)~72 

10B3 = 0.338 + 0.094rt - 0.062~ 

10(73 = 0.585 + 0.233 ~ + 0.131r/~" - 0.118~ 2 

D3 = 0.66 - 1.414r/+ 0.9~72; 

(b) for the Lorentz mosaic: 

A~ = 0.227 + 0.248 ~7 - 0"54r/2 

B~ =0 .784-0 .3517 /  

C1 = 0.132 - 0.577 ~7 + 0"379r/2 

10A2 = 0.046 + 0.527 ~7 - 0.336~/2 - 0.042 rt~ 

B2 = 0-616 - 0.928 r / -  0.166~ + 0.713 r/2 
(73) 

+ 0" 147 r/~ + 0.023~ "2 
2 

1 0 A  3 - -  (0"114-  0"017~)~7 

10/33 = 1 "253 - 0" 803 r / -  0"06~ 

10(73 = 0.668 + 0"221~ + 0-119 r/~ - 0" 117~ 2 

D3 = 0"819 - 1.629,} + 0"975,/2. 

The factor R was 0-0054 for the Gauss and 0.0027 
for the Lorentz distribution. The empirical formula 

reproduces (65) with an accuracy better than 1% if 
yo> 0.2. 

For ~ =  0 this empirical formula holds also for 
ellipsoidal crystals if r / is  replaced by r/~ = sin 0~ and 
X by Xe = In ae. For ~" # 0, in spite of its decreased 
accuracy, this formula still conserves two decimal 
digits in Yo if ao-< 5. 

The present theory (as Zachariasen's and BC) gives 
the primary extinction too, but this must be used with 
caution. To find it we must set ~ = 0, Pio = Pi and 
q~(y) = ~ ( 4 ~ r y / 3 )  in (64)-(67), where ~1 is given by 
(B15b). Since ae = 1, Yo will be just Yoo, depending 
on 7/ '= sin 0' and xp: 

xp = (9/4)Qplp2 sin 20/A. (74) 

An excellent least-squares fit gives the formula (71) 
where one must take D1 = 1.25714 (as above, D1 is 
chosen to have the identity at x = 0 between the first 
derivative of the exact and approximate Yo). As a 
result, 

A1 = 0.509 + 0.255 r/' - 0.718r/'2 

B1 = 0" 139 + 0"436r/ ' -  0" 166r/'2 (75) 

C1 = - 0 " 5 1 2 -  0"53 ~7 '2. 

The correction (54) must also be accounted for, with 
(6162)p = sin 2 20'. 

6. Comparison with the Becker & Coppens theory 

As we have proved above, differences between the 
present and the BC theory appear only if the crystal 
is not of type I. There are two distinct situations: 
either the average mosaic block can or cannot be 
approximated by a sphere. In the first case only the 
second decimal digit in the extinction factor is 
changed, but significant qualitative and quantitative 
differences exist in the presence of the anisotropic 
block shape. In the latter case our extinction factor 
remains invariant to the permutation of the incident 
and diffracted directions, a property lost in the BC 
theory. This can readily be seen from (52). There the 
general term of the sum is proportional to a'~t ~") 
which after inversion of the particle directions 
becomes a~t¢")/a"--ot'~t ~") [where we have used 
(~) = (,--"m) and V,m = V,.,-m]. In the BC theory a is 
always unity and the last identity in general does not 
hold. Then the extinction factor is physically incorrect 
in BC theory if the crystal is of general type with an 
anisotropic block shape. This would have been of 
only academic importance if the quantitative differen- 
ces were small. Fig. 4 speaks for itself. There 1/yo for 
a spherical crystal with /z = 0, 0 = 45 ° and Lorentz 
mosaic distribution is shown versus the parameter x 
from the BC theory. For this particular case the 
latter is related to the actual x by x (ac tua l )=  
x(BC)(1 + a)/2. The curve for a = 1 is just the BC 
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result. It is seen that even for moderate a # 1 the 
relative differences reach 40-50%. For the Gaussian 
distribution the differences are even greater. 

Therefore we can conclude that the results obtained 
in this paper are of practical importance and may 
explain some failure in the description of type II or 
mixed-type secondary extinction. 

I am indebted to Dr A. M. Balagurov for encourage- 
ment and helpful discussions. 

APPENDIX A 

Becker-Coppens approximation 
Here we want to clarify what the approximation used 
by Becker & Coppens (1974a) consists of. This is 
necessary because there is an error in their paper: the 
second unlabelled formula on p. 142, as well as the 
subsequent arguments, are wrong. To arrive at the 
correct formula [their equation (B3)], the oblique 
hatched area S(x~, x2) in Fig. 5(a) (partly reprodu- 
cing Fig. 12 of BC) must be replaced by the horizon- 
tally hatched area So (x~, x2). As a consequence, there 
are four (not two) regions (Fig. 5¢) where the approxi- 
mation acts differently: if (xt, x2) is in the region A, 
then S = Sa and there is no approximation; in region 
B, S < Sa; S > Sa in C; in D all three possibilities 
exist. Hence there are some compensation effects. On 
the other hand, it is not a priori evident that y is 
always overestimated. 

Let us use this approximation for our cases. In the 
first case we must reduce the integral 

J l ( X , ,  X2)  = f d u ,  d u  2 ( x , -  u I ) k ( x 2  - U2)  1 
S(xi,x2) 

x ~ dvidVE(Ul-v0m(uE-v2)"  
S(UI,U2) 

x t~(vx, v2)g(v2). (A1) 

Replacing S(ul, uz) by S,,(u~, uz) (Fig. 5b) we can 

1/y o 

11 a=5 ~ o :3 .5 

~ Q = 2  

I::1=1 

a = 0 . 2  

5 10 15 20 25 30 XB£ 

Fig. 4. The inverse of Yo versus x(BC) for different values of the 
parameter a. The crystal is of spherical shape, 0 = 45 °, ~ = 0, 
Lorentz mosaic distribution. 

write 

X 1 x 2 

Jl(X,, x2) = I du, j" du2(x , -  uI)k(x2 - u2)' 
x 0 o 

u 2 x ~ dr2 g(v2)( u2 - D2) n 

u I 

x ~ dvi (u i -v i )m(v i -v° )  '. (A2) 

Performing the integral over vl and inverting the 
integrals over u2 and v2 one has 

J,(x,, x2) = 

i!m! x, 
(i+ m+ l)! ~ du~ (Xl -- Ul)k  

x 2 

X fo dt )2g(v2)(ul-vT) '+m+l 
U2 

X 2 

x I du2(x2-u2)i(u2-v2)". 
02 

(A3) 

Now the integral over u2 is performed and after that 
by changing u2 for v2 (as an integration variable) one 

x2 ( x O , × ~  

c~ l ' u2 )~ l '  

. . . . .  ,,~! 
X1 

4,o21 

(a) 

o IV ~2i / / 
/ -iiI ',,,,,IIHii#y 
/ ~ C u , , u  °) 

x I 

(b) 

×1 

(c) 

Fig. 5. The BC approximation: the oblique hatched area is 
replaced by the horizontally hatched area (a) in the original 
paper of BC (1974a) and in the present paper for the integral 
(A5), (b) in this paper for the integral (,41); (c) the regions 
where the BC approximation acts differently. 
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obtains 

J I ( X 1 , X 2 )  = 
l !mln!i l  

( l+  n+  1)t( i+ m+ 1)t 

x j dul dtt2 g ( u 2 )  
S(xt,x2) 

X (X 1 -- Ul)k(x2 - U2) l+n+l-i+m+l/t 1 (Ul ,  U2). 

(A4) 

In the second case we have to reduce the integral 

./2 = ]" dxl dx2f(xl)t~(xl, x2) 
So 

X J duldu2g(u2) 
S(x~,x2) 

x tk(ul, U2)(XI--Ul)m(x2--U2) ,. (35) 

Replacing S(xl, x2) by Sa(Xl, X2) (Fig. 5a) and fol- 
lowing exactly the same path as for J1 one obtains 

k!m!nl l !  
dxl dx2f(xl)g(x2) J2=(m+k+ l ) ! (n+l+ l)l so 

x t~ '+k +l(Xl ' X2 ) t~+l+l(x1 ' X2). (A6) 

APPENDIX B 

Kinematical cross sections for the perfect block of 
ellipsoidal shape 

Let ri be the principal axes of the ellipsoid oriented 
along the unit vectors c~ (i = 1, 2, 3). If the ellipsoid 
is transformed into a sphere of unit radius (see 
Appendix C) and one denotes 13 =Y.~ r~h~ci, then the 
integral in (2) can be easily performed and for the 
most probable block one has 

o r ( F 1 , / ' 2 ,  1"3) ---- (4qr/3)rlr2r3n2lFl2~3(fl),  
(Bla)  

~3(/3) = 9(sin/3-/3 cos/3)2//36. (Blb)  

If one takes account of (4), (38) and of the transfor- 
mation (Fig. 1) 

xi = (1 - 8i3)[(-1) i-1 sin 0nl + cos 0n2] + 8i3n3 

( i=1 ,2 ,3 ) ,  (B2) 

the modulus of/3 may be expressed as 

/3 = ko(r*'Ar*) 1/2 (B3) 

where 

F*'=(-F1,F2, F3), A=BPB', (B4a, b) 

P = E(C)'R2E (c), Rij = r~8 o, (B5a, b) 

~j being the Kronecker symbol and B the matrix of 
the transformation (B2). Now (B1) is integrated over 
F3 to obtain tr(F1, F2). Although difficult, this integral 
can be performed exactly, but unfortunately the result 
cannot be convoluted analytically with W(e3). In this 

situation it is better to approximate 43(/3) in the 
beginning and then integrate over /'3. If W(e3) is 
Gaussian, it is convenient to take 

~3(fl) = exp (-c2/32/4~), (B6) 

where Co = 1.612= 5/3 is determined from the nor- 
malization condition for tr(F1,/'2, F3). Now, 
integrating over F3 one has as a result a Gaussian 
with argument proportional to 

t o =  ~, (AoA33-A,3Aj3)F*F*/A33 . (B7) 
id= 1 

By taking into account (B4b) one has 

AuA33 - Ai3Aj3 

= IPlEcos 2 oPT? +(-1) 1+8' sin 2 0P2~ 

+ (-I)i8 U sin 20P1~]. (B8) 

The inverse of P is trivially calculated from (B5a); 
replacing it in (B8) and comparing with (40) and (41) 
we can write 

AOA33 - A,3Aj3 = IPI cos [(1 - 8o)20']/(p,p2). (B9) 

On the other hand, 

333 -- P33 "-IPI[  -(P;g)2] 
=]Plsin220'/(plp2sin20) 2 (B10) 

if (B8) and (B9) are considered. Finally, we find 

. ,  = 2 2 +/91/-" 2 -- 2 cos  20'R1P2FlI-'2) 1/2 

x sin 20/sin 20' (B11) 

or(/'1 F2) - 4"rr sin 20 
' 3Co sin 20' n2 FI2AplP2 

x exp (-¢rc~o2/A2). (B12) 

The exact expression is (Popa, unpublished work) 

or(F1, F2) = (4¢r sin 20/5 sin 20')n 2 FI2A 

X plp2~2(27rto/A ) (B 13 a) 
c o  

~2(x)= 15 E (-I) kx2k 
k=0 

x[(2k+3)(2k+5)kl (k+l) l]  -1. (B13b) 

Integrating (B12) over/'2, one gets 

~(FI) = Q(co/ A )p2 sin 20 

x exp [-7r(c2/A 2)p2 sin 2 20F~], (B14) 

the exact expression being (BC) 

tr(F1) = Q(3/2A)p2 sin 20 ~1[(2Ir/A )P2 sin 201"1] 

(B15a) 

~l(x) = ( x 2 - x  sin 2x+sin  2 x) /x  4. (B15b) 
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The Lorentzian approximation of (B15b) needed in 
§ 4 i s  

• ~ ( x ) = ( l + 9 x 2 / 1 6 )  -1. (B16) 

For o'2(F2) the same expressions are obtained with 
Pl in place of  p2. 

Finally, if t is a segment in the u direction, the vector 
tu is transformed into t U ' - - t  U ' u ' =  t'u'. Then the 
transformation t' of  t is 

t ' = t / p . .  (C3)  

APPENDIX C 
Transformation of the ellipsoid into a sphere 

of unit radius 

Remember here some mathematical relations used 
above (see also Becket & Coppens, 1975). If the 
equation of  an ellipsoidal surface in the system (c,) 
of its principal axes is Y.i 2 2 z , / r ,  = 1 and the transforma- 
tion z, = riz[ is performed then this equation become 

t2 ~ zi = 1, which represents a sphere of unit radius. 
By this transformation any unit vector u = Y~ u,ci is 
transformed into the vector U ' = Y ,  UIc, =Y~ u,c,/r,. 
If  one denotes by Pu the 'el l ipsoid radius along the 
vector u, then the vector pun is transformed into 
u' = puU' of  unit length. In consequence we can write 

1 / p 2 = Z  2 2 u, / r i .  ( C l )  
i 

Now, if u and v are a pair of unit vectors whose 
mutual angle is ~p, after transformation this angle 
becomes 

cos tp'= u ' .  v' = p,pv Y. u,v,/r 2. (C2) 
i 
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Abstract 

The X-ray two-wave diffraction on a dislocation wall 
perpendicular  to a crystal surface, consisting of  peri- 
odically arranged dislocations (low-angle twist 
boundary) ,  is considered in the case when the disloca- 
tion superlattice period is much less than the crystal 
extinction length. The formula obtained for the reflec- 
ted intensity is of the same form as that for an ideal 
crystal with a modified crystal structure factor. The 
superstructure factor of  a dislocation superlattice is 

calculated. The recurrence relations are p~oduced 
which enable a superstructure factor to be calculated 
for a satellite of any order and magnitude hb (b is 
the diffraction vector, b is the Burgers vector). 

1. Introduction 

The grain boundary (GB) is a surface between two 
m i s o r i e n t a t e d  single crystals. The dislocation struc- 
ture  of a GB is well known (Hirth & Lothe, 1968; 
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